Moving Frame Derivation of the Fundamental Equi-Affine Differential Invariants for Level Set Functions
نویسنده
چکیده
Remark : An alternative approach, advocated in [4], is to use the infinitesimal invariance criteria, which requires solving a linear system of first order partial differential equations based on the prolonged infinitesimal generators of the transformation group. In contrast, the moving frame method is completely algebraic, typically much simpler, and, moreover provides significantly more information, particularly the recurrence formulae to be presented below that completely prescribe the structure of the underlying algebra of differential invariants.
منابع مشابه
Differential Invariants of Equi–Affine Surfaces
We show that the algebra of equi-affine differential invariants of a suitably generic surface S ⊂ R is entirely generated by the third order Pick invariant via invariant differentiation. The proof is based on the new, equivariant approach to the method of moving frames. The goal of this paper is to prove that, in three-dimensional equi-affine geometry, all higher order differential invariants o...
متن کاملAffine Differential Invariants for Invariant Feature Point Detection
Image feature points are detected as pixels which locally maximize a detector function, two commonly used examples of which are the (Euclidean) image gradient and the Harris-Stephens corner detector. A major limitation of these feature detectors are that they are only Euclidean-invariant. In this work we demonstrate the application of a 2D affine-invariant image feature point detector based on ...
متن کاملSmooth and Algebraic Invariants of a Group Action: Local and Global Constructions
We provide an algebraic formulation of the moving frame method for constructing local smooth invariants on a manifold under an action of a Lie group. This formulation gives rise to algorithms for constructing rational and replacement invariants. The latter are algebraic over the field of rational invariants and play a role analogous to Cartan’s normalized invariants in the smooth theory. The al...
متن کاملRational, Replacement, and Local Invariants of a Group Action
The paper presents a new algorithmic construction of a finite generating set of rational invariants for the rational action of an algebraic group on the affine space. The construction provides an algebraic counterpart of the moving frame method in differential geometry. The generating set of rational invariants appears as the coefficients of a Gröbner basis, reduction with respect to which allo...
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کامل